Age Modeling and Demographic Forecasting

Advancements in data science are rapidly creating a new field: spatial demography. In partnership with GeoVille and the European Space Agency, we have developed a new technique for predicting and forecasting the age structure of a population living in a given city block. By integrating earth observation data with sophisticated demographic techniques (including Bayesian Model Averaging), we have pioneered a new product called AgeSpot.

How does it work?

AgeSpot computes the number of persons in a designated age bracket likely to live in a particular area. Results can be obtained up to the 50 by 50 meters building block level. AgeSpot’s methodology involves establishing a class of linear regression models. These models are then integrated into a Bayesian Model Averaging approach where we estimate the explanatory power of each linear model. The resulting estimates are then used to create a weighted average of the results of all models. To execute forecasts, we also include an Urban Growth Model which shows which areas are expected to be urban or rural in future years. The main sources of input data are satellite imagery and census information.

Brookings Future Development

Using big data to assess London’s vulnerabilities and vitality

Using AgeSpot, we were able to identify the density of seniors in London at a 50x50 square meter level and make projections of where they're expected to move over the next decade. To fight COVID-19 and future epidemics more effectively, cities have to better understand their vulnerabilities and leveraging big data can help.

Read more

Got a question? Contact us

Lindengasse 56/18-19
1070 Vienna, Austria

Learn More